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Abstract The effects of solvent and crown-ether moiety on
spectral properties of pyridinium styryl dye were studied by
steady-state absorption and fluorescent spectroscopy. Analy-
sis of viscosity and polarity effects on fluorescence quantum
yield and Stokes shift permitted us to suggest that there is a
two stage process of excited state relaxation. The macrocyclic
moiety has a little influence on the first stage of relaxation,
which manifests itself in a magnitude of Stokes shift, but sup-
presses considerably the second stage, which manifests itself
in a magnitude of fluorescence quantum yield. The metal
complex shows an additional stage of excited state relaxation,
namely, photorecoordination of metal cation within the mac-
rocyclic cavity.
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Introduction

Excited singlet states of aromatic molecules, which were
formed as a result of fast vibrational relaxation of an initial
Frank-Condon state, are capable of undergoing further relax-
ation processes with retaining of electronic excitation. One of

such processes is the process of conformational rearrangement
of the light absorbed molecule, i.e., of the structural relaxation
[1].

The structural relaxation leads to changes in the geometry
of excited molecules, which as a rule manifest themselves in
the rotation of its fragments relative to each other [2–5]. In
some cases instead of the mutual rotation, a change in
pyramid-like formation takes place in one of heteroatoms, an
increase in pyramidalization degree [6] as well as flattening of
the structure being possible [7]. The structural relaxation man-
ifests experimentally itself in anomalous Stokes shift of the
relaxation product [4, 8, 9], in continuous shift or widening of
fluorescent spectra [10–13], in fluorescence anisotropy
[14–16], in considerable dependence of fluorophore lumines-
cent properties on solvent viscosity and pressure [6, 10, 17].
At the same time, the attributes of structural relaxation men-
tioned above should be analyzed along with other relaxation
processes which occur also for rigid molecules, for instance,
rotational depolarization, solvent relaxation, and so on.

When the product of structural relaxation does not fluo-
resce, the relaxation process results in fluorescence quenching
[4, 18].

As a consequence of the determinative influence of the
local environment on the structural relaxation, organic
fluorophores are used as optic sensors (molecular rotors) for
measurement of local viscosity in chemical and biological
objects, for monitoring of polymerization, aggregation and
conformation analysis of proteins, viscous flow of liquids
[19].

The most important class of molecular rotors is a group of
compounds, the molecules of which being electronically ex-
cited, are capable of passing into a Twisted Intramolecular
Charge Transfer (TICT) state [20–25]. The excited molecules
of these compounds undergo adiabatic intramolecular reac-
tion, which consists in charge transfer from a donor
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fragment to an acceptor one and their mutual rotation.
TICT state is characterized by a weak degree of π-
orbital overlapping of donor and acceptor fragments.
Thus, the radiative transition is prohibited. That is
why in non-rigid medium these compounds have low
fluorescent quantum yield or anomalous Stokes shift
[20–25]. In some cases, when radiative deactivation is
carried out both from Local Excited (LE) state and from
TICT state, the dual fluorescence is observed. The
shortwave band corresponds to the LE state, while the
longwave band corresponds to the TICT state [2, 5].

Styryl and cyanine dyes are widely used as molecular optic
sensors and photoswitchable devices [26–29], for information
recording on optic disks, as laser dyes and non-linear optic

media, sensitizers in photography, in solar power engineering,
in biology and medicine, in textile industry [30–32].

Stylbazolium salt derivatives are intensively studied be-
cause of their high photostability, related with low quantum
yield of photoinduced trans-cis- isomerization, as well as with
strong dependence of fluorescence intensity on solvent viscos-
ity. These results open up perspectives for their practical ap-
plication as local viscosity sensors [33–37]. A possibility of
practical use was shown of stylbazolium derivatives for spatial
visualization of intracellular microviscosity [38, 39].

The purpose of the present paper was to study the effects of
crown-ether substituent on relaxation of excited molecules of
a pyridinium styryl dye in solvents of various viscosity and
polarity.
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Results and Discussion

Fluorescence of pyridinium styryl dye 1a in non-viscous or-
ganic solvents is usually characterized by low quantum yield
(1–3 %) and large magnitude of Stokes shift (about 4000–
5000 cm−1). As is seen from the Table 1, fluorescence quan-
tum yield of 1a decreases in general as solvent polarity in-
creases. For example, in case of solvents such as ethyl acetate,
butyronitrile, acetonitrile, water, the drop of fluorescence
quantum yield (φ is equal to 0.033, 0.023, 0.0069 and
0.0013, respectively) is observed with an increase in solvent
dielectric permeability (ε is equal to 6, 20, 36 and 78, respec-
tively [40]). At the same time, the compound 1a fluoresces
intensively in glycerol (φ=0.59), which is a polar (ε=43) and
viscous solvent.

Similar to stilbene and its derivatives [41], many styryl
dyes undergo photoinduced trans-cis-isomerization and the
reverse process due to rotation around double bond upon light
irradiation [26, 27]. However, some of the structures possess
high photostability and low photoisomerization quantum
yield. At this case, the main channel of radiationless deactiva-
tion of excited molecules is considered to be formation of
twisted TICT state [33–39, 42, 43].

The following facts point to the possibility of TICT state
formation in stilbazolium salts: low fluorescence quantum
yield of a pre-twisted model compound in polar solvents
(0.0005) [33], 20-fold increase in lifetime (from 85 ps to
2 ns) of a model compound with fixed rotation around formal

ordinary bonds [34], a decrease in fluorescence quantum yield
as solvent polarity increases [35, 37], dual fluorescence of
some crowned stilbene [44, 45], an increase in fluorescence
and trans-cis-isomerization quantum yield upon complex for-
mation of crowned dyes with metal cations, whose electrostat-
ic field suppresses charge transfer [42, 43].

The twisted state is formed by mutual rotation of molecular
fragments relative to each other around central formal single
or double bonds. In the latter case trans-cis-isomerization does
not occur. According to the paper [33], upon the formation of
TICTstate of o,m- and p-(dimethyl)-stilbazolium, the rotation
occurs around all three central bonds. Later it was proven by
the model compound method that the formation of TICT state
by central double bond is impossible [34]. Its formation was
accounted for by the rotation around two central single bonds
[34] or around only one central single bond with an aniline
fragment [36].

Thus, the decrease in fluorescence quantum yield of 1a, as
solvent polarity increases, can be explained by the stabiliza-
tion of non-fluorescing TICT state. In its turn, solvent viscos-
ity increase suppresses the rotation of molecular fragments
relative to each other. For instance, fluorescence quantum
yield of 1a in hexanol and in glycerol exceeds 10–20 times
of that one in ethanol and butyronitrile. In case of glass matri-
ces, the internal rotation, which is necessary for TICT
state formation, is suppressed completely, that is why
fluorescence quantum yield of 1a is equal to unity with-
in the experimental accuracy.
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The introduction of the voluminous crown-ether substitu-
ent into the molecule of 1a also suppresses the formation of
TICT state. That is why fluorescence quantum yield of the
compound 1b in various solvents is, as a rule, higher than in
case of compound 1a. The electrostatic field of a metal cation
and a solvent shell of the second coordination sphere suppress
even to a greater extend the mutual rotation and favor an
increase in fluorescence quantum yield. So, fluorescence
quantum yields of the compounds 1a, 1b and 1b·Ba2+

in acetonitrile are equal to 0.0069, 0.021 and 0.12,
respectively.

The compound 1a shows noticeable solvatochromism,
which, however, is not a simple monotonous function of di-
electric permeability ε, Lippert’s solvent function f(ε, n) [46]
and the empirical polarity scale ET

30 (Table 2). For example, ε,
f(ε, n) and ET

30 (6, 9, 20, 36, 78; 0.20, 0.22, 0.27, 0.30, 0.32
and 38, 41, 43, 46, 63 kcal⋅mol−1, respectively [40]) for such
solvents as ethyl acetate, dichloromethane, butyronitrile, ace-
tonitrile and water increase monotonously, whereas the max-
imum of absorption spectra changes in a non-monotonous
way (464, 520, 478, 470, 448 nm, respectively). This can be
accounted for by the difference between macroscopic and

Table 1 Maxima of absorption (λa) and fluorescence (λf and ~ν f ), fluorescence quantum yields (φ) and Stokes shifts Δ~νsð Þ of compounds 1a, 1b,
1a·H+ and 1b·Ba2+ in various solvents at 295 K and in some rigid matrices

Compound Solvent λa, nm λf, nm
~ν f ⋅10−3, cm−1 φ

Δ~νs⋅10−3, cm−1

1a Ethyl acetate 463.6 603 16.5 0.033 5.1

Dichloromethane 519.9 610 16.3 0.19 2.9

Butyronitrile 478.1 620 16.0 0.023 4.9

Butyronitrile, 77 K 482.9 536 18.6 1.0±0.15 2.1

Acetonitrile 469.9 620 16.0 0.0069 5.2

Hexanol 489.1 609 16.4 0.22 4.1

Butanol 487.0 610 16.4 0.074 4.2

Ethanol 481.4 611 16.3 0.033 4.5

Ethanol, 77 K 489.3 543 18.3 1.0±0.15 2.1

Glycerol 481.0 611 16.2 0.59 4.6

Water 447.8 609 16.4 0.0013 6.0

PMMA 473.8 592 16.8 1.0±0.15 4.3

PMMA, 77К 474.6 572 17.4 1.0±0.15 3.7

1b Ethyl acetate 472.9 607 16.4 0.12 4.8

Dichloromethane 523.6 614 16.2 0.16 2.9

Butyronitrile 485.1 620 16.0 0.056 4.6

Butyronitrile, 77 K 487.3 534 18.7 1.0±0.15 1.9

Acetonitrile 476.0 620 16.0 0.021 5.0

Hexanol 493.7 610 16.3 0.35 3.9

Butanol 492.1 611 16.2 0.18 4.1

Ethanol 485.4 613 16.2 0.088 4.4

Ethanol, 77 K 493.0 548 18.2 1.0±0.15 2.1

Glycerol 482.0 607 16.4 1.00 4.4

Water 455.6 608 16.3 0.015 5.6

PMMA 481.7 597 16.6 1.0±0.15 4.1

PMMA, 77К 482.8 581 17.2 1.0±0.15 3.6

1a·H+ Butyronitrile 331.0 428 22.7 0.0041 7.5

Butyronitrile, 77 K 335.5 390 25.5 0.74±0.15 4.3

1b·Ba2+ Butyronitrile 361.1 604 16.5 0.11 11.2

Butyronitrile, 77К 389.4 504 19.7 1.0±0.15 6.0

Acetonitrile 360.8 604 16.5 0.12 11.2

Ethanol 361.1 596 16.7 0.15 11.0

Ethanol, 77 K 369.3 512 19.4 1.0±0.15 7.7

PMMA 363.0 530 18.6 0.71±0.15 9.0

PMMA, 77 K 379.4 491 20.0 1.0±0.15 6.4

J Fluoresc (2015) 25:1739–1747 1741



local dielectric permeability. In case of ET
30, this means that the

given empirical scale does not describe exactly local polarity
for the systems in question and should be corrected.

The study of concentration dependencies of 1a fluores-
cence in dichloromethane showed the absence of dimerization
and specific interaction with the solvent. The invariability of
fluorescence quantum yield of 1a upon 20-times dilution
shows that dimerization does not occur. The monotonous shift
of 1a maximum in dichloromethane-butyronitrile mixture up
to 0.8 mole fraction shows that strong complexes between
solvent and solute are not formed.

At the same time, solvent polarity effects weak on 1a fluo-
rescence maximum, which is located near 610 nm. This fact
points to small polarity of the excited state of 1a, which emits
light [35, 36]. The shift of 1a absorption maximum towards
shortwave band, as solvent polarity increases, also points to
small polarity of the excited state [35, 36].

Since Stokes shift considerably decreases (by ~3000 cm−1)
in glassed butyronitrile and ethanol solutions of 1a, then there
exists a relaxation process in liquid solutions which is sup-
pressed in glassed media. The authors [34] relate this phenom-
enonwith the fast process of solvent relaxation, which leads to
the Relaxed Solvate Shell (RSS) state with re-orientated sol-
vent shell. The RSS formation occurs with the characteristic
times 20 ps in ethanol and 500 ps in more viscous decanol,
which is much shorter than lifetime of the excited states (80
and 900 ps for the styryl dye with non-fixed single bonds,
1400 and 2400 ps for the dye with fixed single bonds, respec-
tively). The solvent re-orientation manifests itself in dynamic
Stokes shift which increases by 1600 cm−1 for the times men-
tioned above.

The formation of RSS state is practically completely sup-
pressed in glassed butyronitrile and ethanol at 77К, it is insig-
nificantly suppressed in polymeric PMMA matrix at room
temperature and somewhat better upon cooling to 77К. The
small efficiency of PMMA matrix in relaxation suppressing
may be caused by internal voids. It is known that logarithm of

effective viscosity is in inverse proportion to free volume [19].
Viscosity of liquid solvents such as glycerol is not high
enough for noticeable suppressing of the given relaxation pro-
cess. It is evident from the position of 1a fluorescence maxi-
mum in butyronitrile and ethanol at 77 K, in PMMA at 295 K
and 77 K, in glycerol at 295 K (536, 543, 592, 572 and
611 nm, respectively).

The introduction of the macrocycle into the 1a molecule
leads to a small decrease in Stokes shift values (about by
200 cm−1, i.e., by 4 %).

The complex formation of 1b with the cation Ba2+ in
butyronitrile causes a great hypsochromic shift (6400 cm−1,
Fig. 1), which is related with withdrawing the crown-ether
aminogroup from conjugation of molecular π-system due to
the binding of amino group by metal cation. At the same time,
the shortwave shift of fluorescence maximum is small
(430 cm−1). Such difference in behavior of absorption and
fluorescence spectra points to the additional relaxation pro-
cess, namely, to photorecoordination of metal cation in
crown-ether cavity [44, 45, 47–53].

Photorecoordination together with other relaxation pro-
cesses result in anomalous Stokes shift of the metal complex
(about 11,000 cm−1). Although photorecoordination requires a
considerable rearrangement of macrocycle geometry, and the
change in mutual location of crown-cycle relative to chromo-
phoric molecular part from orthogonal to complanar, and also
the inclusion of several solvent molecules into the first coor-
dination sphere of metal cation [49–52], it is known that
photorecoordination is not completely suppressed in rigid me-
dia [54, 55]. Accordingly, Stokes shift of 1b·Ba2+ remains
high (6000–8000 cm−1) even in rigid matrices at 77К, which
indicates that photorecoordination is not suppressed notice-
ably under the given conditions.

Since upon the protonation of the compound 1a at the
nitrogen atom of dimethylamino group, its withdrawal takes
place from conjugation, quite similar to that which takes place

Table 2 Viscosity (η) and the empirical polarity scale (ET
30) of various

solvents under normal conditions [40]

Solvent ET
30, kcal⋅mol−1 η, cP

Ethyl acetate 38.1 0.426

Dichloromethane 41.4 0.411

Butyronitrile 43.0 0.549

Acetonitrile 46.0 0.341

Hexanol 49.4 4.590

Butanol 50.2 2.593

Ethanol 51.9 1.214

Glycerol 57.0 1390

Water 63.1 0.894
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Fig. 1 Normalized spectra of absorption (1–4) and fluorescence (1′–4′)
of the compounds 1a (1, 1′), 1b (2, 2′), 1a·H+ (3, 3′) and 1b·Ba2+ (4, 4′) in
butyronitrile at 295 K
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upon complex formation of 1b with barium cation, it was
interesting to compare Stokes shifts of 1a·H+ и 1b·Ba2+ in
various conditions. The Table 1 shows that Stokes shift of
1a·H+ in butyronitrile is noticeably less the that for 1b·Ba2+

at room temperature (by 3700 cm−1) as well as at 77К (by
1700 cm−1). It can be explained by the fact that in case of
1a·H+ photorecoordination and proton phototransfer do not
take place. Thus, the compound 1a·H+ may be regarded as a
model compound for 1b·Ba2+, in which photorecoordination
is excluded.

The difference in the position of absorption spectrum max-
ima of 1a·H+ and 1b·Ba2+ in butyronitrile (2500 cm−1) is
considerably smaller than the similar value for fluorescence
spectra both at room temperature (6800 cm−1) and at 77 K
(5800 cm−1). As it was mentioned above, this fact is caused
by an additional relaxation process in 1b·Ba2+, namely, by
photorecoordination of metal cation.

Thus, the basic relaxation processes in the metal
complex excited molecule can be described by the fol-
lowing scheme:
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The light absorption by the molecule of the complex in
Ground State (GS) leads to the Tight Local Excited (TLE)
state. Further, due to the fast disruption of coordination bond
between nitrogen atom and metal cation and due to displace-
ment of barium cation from its equilibrium position, the Loose
Local Excited (LLE) state is formed. After that, solvent relax-
ation leads to Relaxed Solvate Shell (RSS) state. The radiative
deactivation (kf) and radiationless deactivation (kd), caused by
the formation of non-fluorescent TICT state, are the main
channels of RSS transformation.

For monomolecular reactions, which are accompanied by
internal rotation, the Kramer’s model allows to describe quan-
titatively the influence of temperature, polarity and viscosity
of the solvent on the rate constant [56].

According to this model, the rate constant k of monomo-
lecular reaction can be expressed as

k ¼ A

ηα
exp −

Ea

RT

� �
; ð1Þ

where A is a constant, which does not depend on temperature
and viscosity, η is solvent viscosity, α is a power index which

is equal to the unity for higher viscosities, Ea is an activation
energy.

Ab initio quantum mechanical calculations point to a
barrierless rotation around a formal single bond at
phenylazacrown and benzoazacrown moieties as the main
channel of radiationless deactivation of crowned styryl dyes
[51, 52]. However, since fluorescence quantum yield of
stilbazolium salts significantly depends on solvent polarity
[35, 37], it can be assumed that the reaction of TICT state
formation has a potential barrier, which decreases as solvent
polarity increases. According [57], the dependence of poten-
tial barrier of TICT state formation Ea on solvent polarity can
be express as:

Ea ¼ E0−β E30
T −30

� �
; ð2Þ

where E0 is a height of the potential barrier in hexane, ET
30 is an

empirical solvent polarity, which is equal to 30 kcal/mol for
hexane, β is a coefficient. Assuming that TICT state
formation is a main channel of deactivation of excited
molecules and using the expression (2), the expression
(1) can be transformed into
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1−φ
φ

¼ A0

ηα
exp

βE30
T

RT

� �
; ð3Þ

or

ln
1−φ
φ

ηα
� �

¼ lnA0 þ βE30
T

RT
; ð4Þ

where A′ is Aexp[−(E0+30β)/RT] and does not depend
on solvent.

When the empirical scale of polarity ET
30 is used in coordi-

nates of the Eq. (4), the experimental points are divided into
two groups (Fig. 2). The first group includes proton solvents
and dichloromethane, the data of which are satisfactorily de-
scribed by the Eq. (4) with α and β parameters shown in the
Table 3. The second group includes ethyl acetate and nitriles,
the data of which fall out of the general dependence (Fig. 2).
This means that the parameter ET

30 is not universal enough for
describing the systems under study. Together with the empir-
ical scale of polarity ET

30, an another measure of local solvent

polarity is also Stokes shift Δ~νs [37]. The use of Stokes shift
as a function of solvent polarity allowed to include the data on
acetonitrile and butyronitrile in the general dependence ac-
cording to the Eq. (4) with satisfactory correlations (r=0.96–
0.98) (Fig. 3). Further increase in the number of solvents in-
cluded in correlation can be obtained by using a mixed func-

tion of polarity f Δ~νs;E30
T

� �
, which can be expressed as

f Δ~νs;E
30
T

� �
¼ xΔ~νs þ 1−xð ÞE30

T ; ð5Þ

where x is a parameter to be optimized.
The Fig. 4 shows the correlation among fluorescence quan-

tum yield (φ), Stokes shift Δ~νsð Þ of compounds 1a and 1b,
viscosity (η) and polarity (ET

30) of the medium at 295 K
(Table 2) using expressions (4) and (5). The best fit x param-
eter is x=0.81±0.04 for the compound 1a and x=0.69±0.12
for the compound 1b.

Proceeding from the value β=0.13 for the compound 1a,
when the scale of polarity (5) is used, and assuming Ea~0 for
the TICT state formation in water, the values Ea=1.5 kcal/mol
in dichloromethane and Ea=0.6–0.9 kcal/mol in other solvents
were obtained.

The dependence of fluorescence quantum yield of the com-
pounds 1a and 1b on the composition of ethanol-glycerol
mixture was studied in order to verify the expression (3).
The given mixture retains approximate the same polarity be-
cause values of ET

30 for ethanol and glycerol are close (52 and
57 kcal/mol, respectively) and the Stokes shifts of the com-
pounds 1a and 1b in these solvents are identical despite of one
thousand-fold difference in their viscosities.

In this case, a linear dependence between logarithms of
(1–φ)/φ and viscosity η was expected. The Fig. 5 shows the
dependence of fluorescence quantum yield of the compounds
1a and 1b on the viscosity of ethanol-glycerol mixture, calcu-
lated from the percentage [58]. A satisfactory correlation is
observed with best fit parameters α=0.56±0.02 for the com-
pound 1a and α=0.72±0.03 for the compound 1b. These
estimates of the parameter α are in agreement with those ones
found above within two standard deviations. A higher value of
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Fig. 2 Correlation between fluorescence quantum yield (φ) of the
compounds 1a and 1b, viscosity (η) and polarity (ET

30) at 295 K.
Numbers represent solvents: ethyl acetate (1), dichloromethane (2),
butyronitrile (3), acetonitrile (4), hexanol (5), butanol (6), ethanol (7),
glycerol (8), water (9)

Table 3 Optimal values ofα andβ parameters in the Eq. (4) for the compounds 1a and 1b, the number of pointsN in the regression and the correlation
coefficient r when using the empirical scale ET

30, Stokes shift Δ~νs and their combination f Δ~νs;E30
T

� �
as a polarity function

ET
30

Δ~νs f Δ~νs;E30
T

� �

1a 1b 1a 1b 1a 1b

α 0.74±0.03 0.89±0.05 0.55±0.07 0.76±0.10 0.67±0.05 0.97±0.13

β 0.069±0.004 0.037±0.002 0.16±0.02 0.10±0.01 0.13±0.01 0.07±0.01

N 6 5 8 7 9 8

r 0.994 0.996 0.96 0.98 0.98 0.96
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the parameter α for the compound 1b as compared to the
compound 1a points to a lesser slipping of voluminous
crown-ether substituent in Kramer’s model.

Experimental

The compounds 1a (4-{(E)-2-[4-(dimethylamino)phenyl]-1-
ethenyl}-1-ethylpyridinium perchlorate) and 1b (4-{(E)-
2-[4-(1,4,7,10,13-pentaoxa-16-azacyclooctadecane-16-
yl)phenyl]-1-ethenyl}-1-ethylpyridinium perchlorate) were
synthesized as was described earlier [59, 60]. Absorption
spectra were recorded on “Shimadzu UV–3100” spectropho-
tometer, fluorescence spectra were recorded on “Elumin–

2M”. Fluorescence quantum yields were determined by com-
parison of squares (S) under corrected fluorescence spectra of
the substances under study and the standards, taking into ac-
count for the solvent refractive index (n) [61] as follows:

φ2 ¼
S2n22
S1n21

φ1 ð6Þ

The solution of quinine sulfate in 1 N sulfuric acid (φ=
0.546) [62] was used as a primary standard. The solution of
coumarin-522 in acetonitrile was used as a secondary stan-
dard, whose fluorescence quantum yield, determined by the
primary standard, is equal to 0.92±0.01 at the presence of air
oxygen and 1.00±0.01 at argon atmosphere. These values are
in agreement with the value 1.0±0.1 for various solvents [18].

Fluorescence spectra at 77 K were recorded upon cooling
samples by liquid nitrogen in quartz Dewar vessel. The solu-
tions of radiation-stitched PMMA in acetone were used for
preparation of polymer films. The solvents, checked for ab-
sence of fluorescence, were used for preparation of dye solu-
tions: acetone, acetonitrile, butanol, butyronitrile, hexanol,
glycerol, dichloromethane, ethanol, ethyl acetate.

Ethanol was dried by distillation over CaH2. Ethyl acetate
and dichloromethane were distilled over K2CO3 to remove
acid traces. Other solvents were used without further purifica-
tion. Barium perchlorate was dried in vacuum at temperature
220 °C.

The protonation of the compound 1a at nitrogen atom of
dimethylamino group was performed with trifluoroacetic acid
(10−2 M), distilled over sulfuric acid. The complex formation
of the compound 1b with Ва2+ cation was performed with
crystalline barium perchlorate (10−2 M). The addition of bar-
ium perchlorate to the solution of 1a at the same concentration
does not practically affect the position of absorption and fluo-
rescence maxima, only slightly increasing the fluorescence
intensity (by 2 %).
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Conclusion

Thus, using the method of steady-state absorption and fluo-
rescence spectroscopy, the relaxation processes of electron-
excited molecules of pyridinium styryl dye 1a and its crowned
analog 1b, were studied. An assumption was made that the
relaxation process includes at least two stages. The first stage
is the formation of low-polar fluorescing RSS-state, which
later at the second stage is transformed into non-fluorescing
TICT state. The TICT state formation is a viscosity and polar-
ity dependent process of structural relaxation. The third pre-
liminary stage, namely, photorecoordination of metal cation in
macrocycle cavity, is observed in the metal complex 1b·Ba2+.
This stage transforms tight TLE state into loose LLE state.
The additional relaxation process of photorecoordination re-
sults in anomalous Stokes shift (about 11,000 cm−1). The for-
mation of TICTstate can be effectively suppressed in solvents
with high viscosity such as hexanol and glycerol, in this case
fluorescence quantum yield increases 10–20 times. Moreover,
the introduction of macrocycle into the molecule of 1a sup-
presses noticeably the efficiency of radiationless deactivation.
The formation of the RSS state is effectively suppressed in
glassed matrices at 77 K, which manifests itself in a small
Stokes shift under these conditions. Photorecoordination of
metal cation is not suppressed even in rigid glassed matrices.
However, the estimation of spectral properties of the metal
complex 1b·Ba2+ without photorecoordination may be carried
out with the protonated product 1a·H+.
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